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ASYMPTOTIC METHODS IN RELIABILITY THEORY: A REVIEW.

Abstract

_;j Section 1 of this paper reviews some works related to reliability
evaluation of nonrenewable systems. The assumption that element failure
rates are low allows to obtain an expression for the main term in the
asymptotic. representation of system reliability function. Section 2 is
devoted to renewable systems. The main index of interest in reliability
is the time to the first system failure. A typical situation in

reliability is that the repair time is much smaller than the element

lifetime. This 2;;st repéir"j;;;perty leads to an interesting phenomenon

that for many renewable systems the time to system failure converges in probablity,
under appropriate norming,to exponential distribution .Some basic
theorems explaining this fact are presented and a series of typical
examples is considered. Special attention is paid to reviewing the werks
describing the exponentiality phenomenon in the birth-and-death processes.
Some important aspects of computing the normalizing constants are considered,
among them, the role played by so-called 42:;n event"%l—gection 2- contains
also a review on various bounds on the deviation from exponentiality.
Sections 3 , 4 describe some additional aspects of asymptotics in
reliability. It is typical for the probabilistic models considered in
these sections, that a small parameter is introduced in an explicit form
into the characteristic of the random processes.

A considerable part of this review is based on the sources which were

originally published in Russian and are available in the English translation.

"Key words: Reliability; exponentiality; fast repair; small parameter;

main event; renewable systems; asymptotics.




0. Introduction

The ultimate goal of reliability theory is, to give a numerical estimate
of reliability indices. It is well known that for all more or less
complicated cases an exact reliability evaluation is practically impossible.

This stimulates interest to approximate methods in reliability calculations.

, In many reliability models of great practical interest "small parameters’
usually are present, e.g., a system under investigation has low element
failure rates and/or the element failure rates are much smaller than their
repair rate. This circumstance makes it possible to use efficient and

powerful asymptotic methods for reliability computation.

The goal of this paper is to review a collection of works devoted
to asymptotic reliability analysis. Most of these works were published in
English translations of Russian scientific journzls and for some reason

are not very familiar to the Western applied probability community.
The contents of this paper follows.

A short Section 1 is devoted to an asymptotic analysis of coherent
systems without renewal. Reliability analysis for these systems uses
the fact that element failure rates, Ai’ are small in highly reliable
systems (formally, Ayt iie, 8 +~ 0), and this makes it possible to
compute the main term of the asymptotic expression for R(t), the

probability of failure free operation during time <t.

Section 2 which is the central in this paper deals with renewable

systems. The reliability index of greatest interest for these systems is
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the probability of failure-free operation during a given mission time t.
The asymptotic analysis exploits the basic fact that the average repair
time for a failed element is usually many times. smaller than the average
3 failure-free operation time for the same element. (This is termed in
reliability as ""fast" or "rapid" repair). A very general scheme in

asymptotical analysis is the following.

L System functioning is described by a regenerating random process

k(t), x(t) often being the number of failed elements at time t.

The regeneration period of «k(t), £ = &' + £", where &' corresponds
to k(t) =0 and " to «x(t) > 0. Rapid repair results in a small
probability q of having system failure on a single g'"-interval.

The time <t to system failure (SF), <t = 51 L EN, where N is

a geometrically distributed random variable (generally, N depends on §).

It is not surprising that by means of an appropriate norming constant

Y, y-t should converge in distribution to an exponential distribution function.

Sections 2.1, 2.2 and 2.3 consider various aspects of this fact and

related facts. Section 2.4 gives a review of a series of important
applications to various reliability problems. Computation of the
quantities determining the normalizing factor vy is a diffiault

- analytic problem. We review briefly several important works on this
topic, mainly due A.D. Solovyev, to give an idea about some technical

b
aspects of these computations. ‘
Many of the reliability models of renewable systems can be formulated \

]

in terms of queueing theory. The difference is that the asymptotic
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analysis in reliability deals with low traffic, while the classical .

queueing asymptotic deals with high traffic. A few works about low

traffic for queueing models will be reviewed in section 2.5.

Birth-and-Death processes are perhaps the most popular and useful
in reliability theory. Section 2.6 is devoted to a brief review of
the main features of the asymptotic analysis for these processes. Here
the failure-free operation time is interpreted as a passage time Ton
from an initial state 0 to a "high'"-level state =m representing
SF. The works by A.D. Solovyev and J. Keilson contain a rather complete

investigation of asymptotic properties of Tom and related variables.

Section 2.7 describes some general features of exponential approximation.
One of them is that the main term in the asymptotic expansion of the
normalizing factor has a transparent and simple probabilistic meaning
and corresponds to so-called "main event". For example, it might be
the event that no repair of any failed element was completed before SF
took place.

Section 2.8 surveys several works on estimating the error bounds

for the exponential approximation.

Section 3 gives very briefly an idea about a method developed by
I.N. Kovalenko for a special analysis of a multidimensional Markov-type
process which has one slowly varying component and one rapidly varying
component. It turns out that, under certain assumptions, the slowly
varying component behaves like a continuos time

Markov process. Section 4 describes a method of asymptotic analysis

R i
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based on a combination of analytical and simulation methods, which is

applicable when the quantities determining the original process are

expressed in a series form involving a small parameter.

We did not survey a large number of works devoted to the '
investigation of reliability indices for large t (t + =), e.g.,
stationary probabilities of being in a certain state, etc. In addition,
all works dealing with asymptotic properties of input flows, e.g., flow
thinning, superposition of flows, etc., were left outside the scope of

this review.

Our goal was not to present an exhaustive list of bibliography on
the topics concerned in this survey. First, we avoided mentioning those
works which are not available in English. Second, we did not mention
papers or books which already were cited in the reviewed sources. The
reader can easily trace them from the cited:'works, if he becomes

interested in the topics discussed in this review.

This review is addressed mainly to those readers who prefer to get
a first acquaintance with a new topic on an intuitive level, without
going into too may technical details. The reader who is interested in

proofs and other formal details will be able to learn them from the

reviewed sources.




PP~ ST ~ g~y Tt T =

Notation and Abbreviations

Ne shall use the following notation and abbreviations.
,
T.V. - random variable
p.d.f. - probability density function ]

d.f. - - (cumulative) distribution function o S

BD-process - Birth-and-Death process

E SMP -  Semi-Markov process ;
SF - system failure ;
! CM™ - complete monotone (family of distributions) }

g ~F(x) - r.v. £ is distributed according to the d.f. F(x). {
E~ Exp(A) - r.v. £ has an exponential distribution with parameter 2. ;
a~b - a and b are asymptotically equal, i.e., a/b + 1

E[zg] - expectation of r.v. .

F(x) =1 - F(x)

X = (X,X),...,X ) - aTOW Vvector; X<y == X; § y; ,i=l,...,n, but for some j,xjsyj. 4
T - time to system failure.

R(t) = P{t > t} - system reliability.

A,Ai - failure rates and/or transition rates for a Markov process.
E,, E_ - sets of "good", resp. '"bad" states of a system.

v(t), x(t), x(t) - random processes.

P= ||pij|| - transition matrix for a Markov chain.

LP stationary probabilities for a Markov chain.

F{(x), H(x), G{x) - d.f.'s.

Tom - Passage time from state 0 to state m in a random process.
Tm the expectation of Tom
o - end of proof or end of the formulation of a theorem.

|B] - the number of elements in the set B. ;

1= (1,1,...,1)' - aunit column vector.




1. Systems Without Renewal

Consider an arbitrary coherent system consisting of n independent

h

components (elements), the lifetime of i*™™ element being an exponential

r.v. with failure rate A Let the state of the system be described

i.
by a binary function ¢(x), where x = (xl,xz....,xn), xg is a binary
indicator of the state of ith element (see Barlow § Proschan, 1975,

Ch. 1,2,4). Let Tt be the system lifetime and let t be the mission

time. Denote for any x, A(x) = {j:xjsl}, B(x) = {j:xjso}. Then

-A.t -A.t
P{tst} = F(t) = 3 n e J m (1l-e ).
{x:0(x)=0} jEA(X) jE€B(X)

.An asymptotic investigation of this formula for low failure rates
was done by Burtin § Pittel, 1972. A small parameter 8 is introduced
by representing i, = Xie and setting 6 - 0. Denote by A(t]e)
system failure rate, A(t!8) = (dF(t)/dt)/R(t) and by r the size of
minimal cut-set: r = min{|B(x)| : ©(x) = 0}. The following theorem was

proved in the abovecited paper.

Theorem (Burtin § Pittel, 1972). As 6 -+ 0

1

Actle) = roF tF° T n
{x:9(x)=0 & |B(x)|=r} j€B(X)

X, (1+o())

uniformly with respect to an arbitrary interval 0 < § €t < A < =, #

The main term in (1.2) corresponds to the Weibull distribution.
To explain this surprising fact, let us substitute XJ. = Xje into (1.1)

and expand exp(-xjt) =1 - i'jet + 0(8). The main term in the

@a.

1.2)
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expansion will be determined by failure states x such that ©(x) = 0
and |B(X)[ = r.

After some algebra one obtains from (1.1) that
Prst} = 1 - tTeTg(X) A +oQ)) ,

where ) = (;,35,...51 ) and

a z noox,
{x:9(x)=0 § |B(x)|=r} j€B(x)

gd)

Thus,
R(t) ~1 - tTe¥g() ~ exp{-8TtTg(D)} ,

which corresponds to thé Weibull distribution.

The role of min-cuts in getting an accurate approximation to system

reliability was discussed by Locks, 1980.

The formula (1.2) and/or (1.4, 1.5) can be used for practical
purposes only if there is an efficient method for findin; all minimal-
size cut-sets. For a real-size system this might be a rather difficult

problem.

Z. Waksman, 1982, proposed a promising approach to this probiem,
for a particular type of coherent structures, namely, two-terminal net-
works. His approach uses a flow-in-network technique zud is based on
introducing a special subnetwork which is equivalenf to the original

one in the sense of its asymptotic analysis.

(1.3)

(1.4)

1.s)
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Consider a network - an undirected multigraph- G = (E,V) - for which

the failure is defined as disconnection between two vertices S and T,
called terminals. A separator T in G isa s.et of edges EGE such
that the removal of E disconnects all chains joining S with T.
Separators of minimal size are called minimum separators (this corres-
ponds to the minimal cut sets in Barlow § Proschan terminology). An
edge e € E is called essential iff e is contained in a minimum
separator. Z. Waksman introduces a subnetwork G* = (E+,V’)A obtained
from G by contracting all edges of G which are not essential. It
turns out that the main temms in asymptotic failure probability

representation (1.3) are the same for G and G+.

Assume that each e€ E has a maximal flow capacity equal to one.It was proved
that there is a maximum flow from S to T which saturates each essential edge
and does not saturate any unessential edge.The above-cited paper contains an
efficient flow-type algorithm for identifying all essential edges. The
reduction of G to G already signifies a considerable simplification
in reliability computation. The evaluation of the main temm in the
asymptotic expansion for G' is carried out by an efficient algorithm
which uses pivoting decomposition (see Barlow § Proschan, 1975, Ch. 1).

Specific properties of G* allow accelerate considerably the computations. 4

It is easy to obtain simple formulas for g(A) for several ’

important particular cases. For example, for a k-out-of-n system,

gQ) = b m A, (1.6)
y,eenigd kel 'k i
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: where r = n-k+l1 and the summation is made over all ( : ) combinations

of r indices. Derivation of (1.6) and als» formulas for series-

parallel structures can be found, for example, in Gertsbakh, 1982.

The formula (1.5) for R(t) allows obtaining a lower confidence

limit for R(t) if an upper confidence limit( (CL) can be found for the i

parametric function g(). A method of constructing such an UCL was

described in Gertsbakh, 1982.

It is important for practical applications to estimate the error
in reliability evaluation by formula (1.5). In some situations, the

following upper bound migfxt provide good results:

-t -t

0g F(t) - { T n eJd 1 (g-e I)rs .

{(x:0(x)=0 & |B)|=r} jEAX) §€B(x) !

e }

s e I = 1.7 !

m=r+l m! -7 ;]

n |

there A=t E£1.). .
i=1 1

)

|

This formula can be obtained by combining the following two facts. i
First, the markovian process v(t) which describes system degradation ) *

from state (1,1,...,1) down to a failure state

- *
x €E_ = {x:0(x)=0 & IB(§_)| > r+l} should have at least (r+l) transitions.
Second, the probability of having at least (r+l) transitions in wv(t)

is no less than the same probability in a "majorant” process '\7(1:) which
n

has a constant transition rate A = I .Ai. But the latter is a Poisson
i=]
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process and that. explains the form of the bound in (1.7). This method, in

fact, was suggested in a general form by Kovalenko, 1975, Sections 2.6,2.7.

2. Systems with Renewal i

2.1. Introduction. Let us consier a system consisting of two identical

[P —

blocks 1 and 2, having exponential lifetime, and one repair channel. The
repair time for both blocks has some d.f. H(x). At t =0 block 1l
starts working while block 2 is in standby. When block 1 fails, block 2
starts working and block 1 goes to repair. If block 2 fails during the

repair, the system, by definition, had failed. Otherwise, block 1 returns
to operation and block 2 - to standby. We are interested in the

distribtution of the time to failure t of the system. Let us call a
cycle the time interval which starts by putting block 1 into opera;ion
and ends with the completion of repair of a failed block (type 1 cycle),
or with SF (type 2 cycle). Denote by £, n the lengths of these !

-

cycles. It is clear that

t.el’52+"'*EN_1+ns (2'1)

r.v. §. Let q be the probability that the cycle will terminate by a

i
is !
where N,/éhe random number of cycles, g; are independent realizations of ,
SF. Then clearly N has a geometric distribution: '
|
\
\

PiN=k} = A-q)%1q, k

04
-t

(2.2)

The operation of many renewable systems until the appearance of the

first SF can be described in terms of the model ( 2.1). It is very
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important for reliability theory to know the probabilistic properties of
the r.v. t. It is typical for situations stud%fd in reliability that q
is small, which reflects the fact that the average time of normal operation
is much larger than the average renewal (repair) time. Therefore, it is
natural to investigate the distribution of <t for small values of gq,
fomally for q - 0. It turns out that under quite general conditions

the appropriately normalized r.v. <t converges in distribution to an

exponential d.f, with parameter A = 1 .

2.2. Keilson's theorem. Let v(t) be an ergodic continuous time

regenerating random process with state space X. A particular state

Xy € X has the property that each entrance into it is a regeneration
point of v(t). Define for each natural m a decomposition X = X? + xg
Suppose Xq € X?. Let (l-qm) be the probability that there will be

no SF on a single regeneration period, where SF is defined as entering
the set Xg. Denote by u, u < -; the expectation of the length of one

regeneration cycle. Keilson, 1966, proved the following theoren.

Theorem (Keilson, 1966, 1979). Let q -+ 0 as m=~+ = and let

A inf{t: v(z) € X;|v(0)=xo}. Then for each x > 0

cx}ul-e* # (2.3)

lim P{
mre

%'n
n

The proof is based on the investigation of the limiting form of the

The importance of this theorem

moment generating function for r.v. Ty
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stems from the fact that only two parameters are involved in the limiting
distribution: the average length of a regeneration period u and

"failure'" probability q ona single regeneration period.

Remark. It follows from the proof of the theorem that u in (2.3) can be replaced

by Uy »the average (conditional) return time to X, for those trajectories which

do not visit )('2Il
We demonsirate an application of Keilson's theorem by an example.

which might be of interest for reliability theory.

Example. Asymptotic distribution of the time until a SMP gets out of a

kernel (Ushakov § Pavliov, 1978),

Consider a SMP v(t) with state space X = (1,2,3,... ). Let

Fij (t) be the one-step sojourn d.f.'s and let P = Hpij” be the

matrix of transition probabilities. Let X = Xl + Xz, Xl = {1,2,...,n}.

X, is called a “"kemnel'". Define for each 1 € X,, €, = I It is
1 1 i j€X2

assumed that €; are small and let formally € 0. The Markov chain

pij'

with state space X and transition matrix P has no transient states,
is irreducible and positive recurrent. Assume also that for i € X

m = Ipy g F;j(t)dt s Const < = (2.4)

j€X

Let us introduce a "conditional" SMP Yo (t) with state space Xl.
vo(t) is obtained from v(t) by setting € = 0 and

pgj = pij/(l-ei). Assume that vo(t) is an ergodic process. Denote

by n? the stationary probabilities for the Markov chain PO ||ng||
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" By a well known formula the mean return time "gl to the state 1 in
.. 0 0 T
vot) is u;, = 1§x on /w1 » where m, = 2 pjj { F (t)dt.
1

We are interested in the limiting distribution of r.v. i

t = inf{t:v(t) € lev(O)sl} which is the exit time of v(t) f£rom the

kernel. The key observation is that <t has the representation (2.1),where Ei are

the return times to state 1 without visiting x and n is a "direct" passage time
from state 1 to

There is a small probability q that SMP v(t) will leave the
kernel between two consecutive visits into state 1, because, as
postulated, €, are small. Thus, Keilson's theorem can be applied and

it remains only to compute q. To do that, let us introduce the following
conditional probabilities:
a; = P{exit to X2 during a single regeneration period, before
returning to state 1 ]the regeneration period starts at state

iceg Xl}.

Clearly, a; satisfy the following system:

n
a; =€ + I Pk %k’ i=1,,...,n. (2.5
k=2
Dividing each equation by l—ei, we obtain {
2 0) (0)
a; *ase; ¢ O(ei) = 2 plk a - ‘e o (2.6) {

Now multiply ith equation by wg and sum up all equations. Using

the fact that 3_0 = “OPO 3_01 = 1, one obtains

T Y TS 7 PO A e Tt e MY




z tgci + I wgaiei + O(ez) = X wgai - "(1)"1 + I “ioei R
1€X1 iEXl . 1€X1 iEXl
where ¢ = max € - From this
iEXl
a = (z woe - I toc €, + 0(&:2))/1? . (2.7)

i’i iii
i.€)(1 i€Xl

But from the system (2.5) one can see that e, = O(ei)' Using (2.7),

we see that

z ﬂlei z “ie:.
. =qs iGXl . O(ez) 5 1€X1 2.8
1590 ) .
LY LY

Thus, the normalizing factor in (2.3) can.be taken as

B=dea £ nde/z wm, 2.9)
"1 iexp ttiex *?

and we obtain finally that

lim P{Br ¢ x} =1 - 7% (2.10)

when ei-'O for iEXl.

This result was obtained by PavlovgUshakov , 1978, using more complicated

techniques.

T ey
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2.3. Generalizations of Keilson's model. Solovyev's theorems.

Keilson's theorem relates the fact that qnf*-o as m + o to the
changes in X;. One can think, for example, that Xg get "smaller"
when m + =. But this particular form of the behavior of q is too
rgstrictive. It is more natural to consider a regenerating processes
that can change in such a2 way that the probability of appearance Af the
SF on a single regeneration period goes to zero. This approach was

adopted by A.D. Solovyev.

Let x(t) be a regenerating process, and ty, = 0« t <t <.,
instants of regenerations. On each regeneration period =t -t

an event A.n can occur at sdme instant tn-l * 0 < n, En' An

and n, are defined on the trajectories {x(t), tn-l <tzs tn} and
they are independent of the behavior of «(t) outside this period. Let
T.v. T be the time of the first appearance of event A and let Xy be
the indicator function of A,- Define

En: if Xn'o;

ﬂn. if X.n‘l.

Let g, ~F(x), w_ (2) = E[exp(-25 )x ], &(z) = E[exp(-2%)] ,

q =@ (0) = P{An}. It is easy to obtain that

a(z) = E[e7*"] = 0_(2)/( + ©_(z) - ©(2))
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qQ-@_(z)

Let Q= sup yoey—, 9o = max(9,Q).
z>0 1-o(z ’ 0 .

q For the sake of simplicity, the subscripts of r.v.'s ., £, n, X t
will be dropped. Denote also

1/ (p-1) 1/(p~1) ,
. = (E.Lﬁ]_) ® ‘@ G = (EBB.]_) S (2.12) _;
P NERDP P \EEn? ]

Theorem 1 (Solovyev, 1971)

If the distribution of (§,n,x) vary in such a way that q > 0 !

and qq * 0 and if for some normalizing factor y, yt converges to a

=>trw

proper r.v., then

=

lim E[eY%") = 0 + w(z))™!, (2.13)

where

- -2x
w(z) = £ !-'%-— dP(x) , P(x) is nondecreasing function such that

T AT T R g o Sy

-
P(0) =0 and | %l:—gl < », A necessary and sufficient condition for the
1

L e o e e

distribution (2.13) to converge is that for every x > 0,

N
lmga-ng’) = P(x) #

e v et

¢
4
'
i
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Remark (Solovyev, 1971). In the case E[;] = T < » the normalizing factor
can be taken as y = q/T and out of all distr%?utions in the class

(2.13), t’e "normal" one is the exponential distribution. For it

P(0) = 0, P(x) =1 for x> 0, w(z) = z. All other distributions

arise as a result of '"pathological'' variation of F(x) as we take the
limit. For convergence to an exponential distribution (in the case of

finite average E[g] = T), it is necessary and sufficient that for every

x>0

Tt tT
lim —dF (=) = 0 #
{ 3 (q )

The following theorem replaces the condition q, * 0, which is

difficult to verify, by a more practical one.

Theorem 2 (Solovyev, 1971)

If for an arbitrary p € (1,2], E[zP] < =,

1im P{35 > x} = 1im P{35 > x} = ¥ # (2.14)
T - T
a -0 a0

P p
In applications often the regeneration period 5* has the following
structure: {* = ' + ", where &' is a random period corresponding to
system operation in the absence of element failures(so-called "free"
period); <" starts with a failure of some system element and ends either

by a return to a "brand new' state of the system or by a SF (3" is called

"busy” period). In all subsequent examples ' will correspond to system
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operation when some of its elements are being repaired. The period ",

on the average, is very small in comparison wit.h Efz'], which reflects a
typical "fast repair' situation.
The following theorem given in Gnedenko&Solovyev,1974 ,provides simple |

sufficient conditions for the asymptotic exponentiality. |

Theorem 3.

If ' ~ Exp(xo), then /

lim At > x} = P * (2.15)
- "
X E[5"1+0

The most difficult part of applying the theorems given above to i
particular situations is (1) checking the conditions providing asymptotic ¥

exponentiality and (2) finding the normalizing factor for the r.v. t.
The latter demands, as a rule, considerable analytic efforts and involves

technical "tricks".

2.4. Applications of theorems of 2.3 to reliability problems.

We survey in this section several important examples of applying

the general theorems given in 2.3 to particular reliability models.

Example 1. A GI|G|r|(m-r)-system (Solovyev, 1970).

A system has (m+l) identical elements. One and only one of them

is operating and all others are in a "cold" standby. The lifetime of

the operating element is X ~ F(x), E[X] = 1. When this element fails,
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it enters the repairing device which has r identical repair channels,
each one being able to repair one failed elemenf. The place of the
failed element is taken by an other element from the standby. The
repair time for each element is Y ~ G(x). If no repair channel is
svailable for a failed element, it willuwait in a line. Thus, the
normal cirailation of elements is operation-waiting for repair-repair-

standby-operation, etc.

Assume that at the initial moment t = 0 the functioning element
has failed and all other m elements were in standby. SF happens
when at the instant of the failure of the operating element, all other
elements are either in repair or waiting for it, i.e., the standby is
empty. Speaking in terms of an GI|G|r| (m-r)~system, the SF appears
wheén a customer arrives to a service device when all r service positions

and all m-r waiting places are occupied. Let (t) be the number of

customers in service at time t , j. e, the number of failed elements at time t .

Time instants ti’ to =0 < tl < t2 < ... at which elements fail

in the presence of r empty service channels are the regeneration points
of x(t).

Assume that element failures took place at the instants T 0,

Tp=Ys T3 ry 0t YaseesToy =V + .. ym. Consider the following

trajectory leading to a SF: ith service channel is busy during the time

interval [Ti’rm+1]’ i=1,...,vr. It is clear that at the instant Toel

the system will fail. The event M = {no repair has been completed before

the (m*1)®® failure} has the probability

e Ty
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» o« [_J
P{M} = q, = j;...g a(y1+...+ym)...G(yr+...*ym)dF(yl)...dF(ym). (2.16) |
|
L] i
The following proposition which can be found in Solovyev's paper, 1971, !
gives sufficient conditions for asymptotic exponentiality of r.v. t, the ﬁ
|
. time to SF, and the form of the normalizing factor. ;
A 1f !
' !

(i) E[X] = 1, F(x) is fixed, |F'(x)| ¢ C, F'(0) = 1,

g g =

F'(x) is continuous at zero;

(i1) G(x) = c°(’€i), (x) is fixed and € + 0;

(Gii) o , = f ™1 36%x) < =,

< m+l
nel é

Then

lim P{qt>x} = ¢™* , where
0 ;

r-1 G0 <

@ m-r o 0
q~qy~ ()" {,%}T! Ll" ¢ (u)du] i '

(ii) expresses the fact that the service is '"fast"; (iii) is used in the

proof that q ~ -

Example 2 - a general model of standby with renewal (Gnedenko § Solovyev, 1974).

Let us consider the system of Example 1 with the following modification:
each element which is not in the repair and is not waiting for repair can

fail and has failure rate A, depending on the total number of nonfailed

k
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elements k. Regeneration points of «(t) are the instants when «(t) ;
enters state O. The regeneration period is ¢g*= z' + ', where ', " ]
are independent, ;' is a "free' period for whi;h k(t) = 0 and g"

is a "busy" period for which x(t) > 0. Clearly, ¢' ~Exp (1,). Denote

by q the probability that the SF appears on a busy period; let

T= f xdG(x). The following theorem is the key for investigating this ' [
c

example.

VT e e

Theorem (Solovyev § Gnedenko, 1974).

lim P(a qt > x} = & . (2.17)
T+0
Proof. Let us consider a '"majorant" process k(t) with respect to «(t),
which is constructed as follows. Replace all element failure rates by

XA = max A\, and replace r service channels by one channel. The busy

k’
k
period " for «x(t) will exceed, on the average, the budy period ":
E[z"] » E{¢"]. From the queueing theory it is kiiown that
E(Z"] = T/(1-AT). Since E[{"] » 0 as T + 0, E[g"] * 0, and it remains

to apply theorem 3 of Section 2.3. #
It should be noted that introducing a "majorant' vandom process is a

very typical way of proving theorems similar to the above. The following

condition reflects 'fast'" repair:

Y™ de(y)/T® > 0 . (2.172)

OoOv— 8




Obviously, it guarantees that T + 0. Similar to the case of Example 1,
it was proved that given (2.17a), q~gq, = P{Mz = P {no repair has been

completed on the busy period}.

Simple formulas were derived for q, for particular cases r=nm

and r=1:
For r=nm
xlxz...xm m
q0~_ll!_—q xdG(x)/ R : (2.18)
For r =1
A Aqeced @
qp~ 222 [ $™6(x) . (2.19)
) 0

Example 3 - "hot" standby with renewal (Solovyev, 1971). The system

consists of m elements each of which operates, fails, is repaired,
operates again, etc., independently of all other elements. The state of

the system at instant t is described by a vector x(t) = (xl(t),...,xm(t)),
where xi(t) =1 if element i is in operating condi:ion at time t and
xi(t) = 0, otherwise. Let us suppose that the set E of 2" states of

the system is partitioned into two subsets E = E* + E_, where E* is °

the set of '"good" states and E_ is the failure set. The problem is to

find an asymptotic distribution of 1, the system failure-free operation

time: t = inf{t:x(t) € E_{x(0) = (1,1,...,1)}.




Assume that the lifetime of i'" element X, ~ Exp(ki) and that
m
the repair time Yi ~ Gi (y). For simplicity, I Ai = 1. The follow-

*l

ing notation will be used:

m m Y2 m
T, = E[Yil, G(t) = {. xicict). Ty = i: xi‘ri. m = E( 1]. my = L Am .
The regeneration cycle of x(t) consists of two independent parts:

¢', on which x(t) = (1,1,...,1) and g", on which x(t) < (1,1,...,1).

The fast repair situation is reflected by the demand that My * 0.
It can be proved that in this case &2 + 0 and E[g"] + 0. The main
tool for proving these facts is again replacing the original x(t) by

another process _%_(t) which in this case corresponds to a number of customers

in an M|M|1-system with input flow with parameter A = 1. Note
that E(g' +¢"] =1 +«+ E[g"] +1 as m, + 0. Thus, theorem 2 of 2.3
shows that
lim P{qr > x} = &* . (2.20)
mo-*O

It is more difficult to find an asymptotic estimate of q. It turns out

n
that if T (.-:3-)-» 0, then
k=1 Mk
n
a~a'= I A M o) (2.21)
X€E i=l ’

+

where A(x) is system failure rate for the state x € E+.
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Brown, 1975, considers a special case of the system described in
Example 3, for which E_ has only one state, m.mely x = (0,0,...,0)
and all repair times Yi ~ exp(ui) . The author proves, using mainly

the Laplace transform technique, the following theorem.

Theorem (Brown, 1975)

If all Ai > 0, at least one Ai < », all By <=, at least one
;> 0, and Ai’ ¥i» @ change in such a way that
m

logm -+ I yu,
1
+0, ™

Ajtuy
n == -{ min (A;+p)}
i l1gism

then <t/E[t] converges in distribution to an exponential r.v. with
parameter 1 #

Brown's condition (*) reflects the '"fast" repair.

Example 4 - renewable system with redundancy (Gnedenko § Solovyev, 1975)

Let us consider the system of Example 3 with some additional features
added. If the state of the system is x(t) at time t, then the
probability of the failure of the i"'h element in the interval ([t,t+h] is
xi [x(t)Jh + o(h), i.e., this probability depends on the state of the whole
system x(t). Besides, there are r, r < m, repair channels, the repair

time of element i on the repair channel j is Yij ~ Gij (y), and

E[Yij] = Tij' It is assumed that for each element i there is a set
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of repair channels able to perform its repair. The repair of failed elements
begins either at the instant of its failure (if the appropriate channel
is free) or at the instant at which a repair of some other element has

been completed.

It will be assumed that element failure rates are ‘'small, formally

that they have the form axi(g), where Ai(g) are fixed and a + 0.

m
Let A(x) = .Zl *i<£) , where Ai(§) = 0 if x; = 0.
1=
As in the previous cases, the problem is to find the asymptotic .

distribution of r.v. t
t = inf(t:x(t) € E_|{x(0) = (1,1,...,1)}

The following theorem based on theorem 3 of 2.3 establishes the

asymptotic exponentiality.

Theorem (Gnedenko & Solovyev, 1975)

Let X = max A(x), G(yj = min Gij(y), T = g Gly)dy . -

x€E, i,j

Then
Lim Pigpy > x} = &" ' (2.22)
AT>0

It is intuitively clear that E[t] = (A(x(0))q)™}, where q is the SF

probability on a single regeneration period. It will be very instructive

to follow the main lines of finding an asymptotic expression for q.
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Let us consider the class D of all trajectories of x(t) leading
from the state x = (1,1,...,1) into the failu.re set E . A trajectory

d= {x(0) » ﬁ(l) > .- i(k)} is called monotone if i(O) >£(1)>

veo > x%¥). For example, the trajectory (1,1,1) + (1,1,0) + (0,1,0)

m .
is monotone. Denote |[|x|| =m - I x, ([1x]| is the number of failed

~ i=]

elements corresponding to the state x).

The state x' € E_ for which ||x'|| = s = min ||x|| is called
- e

minimal system failure state, or minimal state. A monotone path leading
from x = (1,1,...,1) to a minimal state is called a minimal monotone

path. Let DO be the set of all such paths. Then

D= D0 + D1 ’ (2.23)

where Dl is the class of all other paths. Let q(d) be the
probability that the SF will occur along a path d. Then

q= I q(d)= I q(d) + I q(d). (2.24)
dep deo,) deo,

The crucial fact is that for a + 0, q ~ qQ " dZ q(d). In other
€D

0
words, the "main" part of q cdrresponds

to the "shortest" way of failure appearance, 'i.e., along the minimal

monotone paths.

Gnedenko § Solovyev, 1975, present several explicit formulas for GP

for important particular cases. For example, if G; 3 (y) = Gi ),

1
1
¥
'
I
k!

— o




E[yij] = Ti’ xi(i) = xi, each element can be repaired on any channel

and r = m, then

-1 s -1 -1
(E[t])) ~a” L lk(l)xk(Z)"‘Xk(s)Tk(l)'°‘Tk(s)Crk(l) ...t Tk(s)) ’ (2.25)
where the sum is taken over all minimal system failure.states, and
k(1) < k(2) < ... < k(s) are the numbers of failed elements in the
minimal failure state.
If r =1, then
<l 5
Efr}]) ~a" 2 Ak(l)xk(Z)'"xk(s)(ms-l,kcl) ...+ ms-l,k(s))’ (2.26)

where m_ . = E[Y™'] and the sum is similar to that in (2.25).

s-1,
A problem which is very similar to that described in Example 4 was

considered in a less general setting by Ovchinnikov, 1976.

A useful summary of main reliability indices of various types cf
systems, for which the asymptotic exponentiality of time to failure is

valid, can be found in the book by Kozlev § Ushakov, 1975, Sec. 4.2.

2.5. Reliability models in terms of queueing theory. The models considered

in Section 2.4 can be translated into the language of queueing theory.
When the system is normally functioning it generates a flow of failed
elements ("customers') which need to be served (repaired). SF appears
when an element fails in the presence of, say, m elements which have

already failed. In queueing theory terms, this corresponds to the loss

of a customer who had arrived to a servicing device when all r service

i e =gl




channels and all (m-r) waiting places are occupied.

The difference between reliability and queyeing problems is in the

fact that reliability theory is usually interested in the case of the

low intensity traffic (this corresponds to fast repair), while the classical

queueing asymptotics deals with high traffic intensity.

The paper of Vinogradov, 1967, deals with a GI|M|1]|(n-1)-system.

The interarrival time has d.f. F(y) which varies that

ag = J e "aF(x) = o.
0

Let T, be the moment of the first ioss of a customer. The ¥

general class of limiting distributions for the r.v. rn-y(a is

o)

investigated. In particular, it is proved that if

+ 0 then P{rn/E[rn] > x} » e, The paper

[ t%F(@) <~ and a
0

by Vinogradov, 1974, studies an M|G|l-system with fast service: the

service distribution time approaches zero in probability. It is proved

that P{rn/E[rn] >t} » e't, where t_ is the instant at which the queue ]

n
length reaches the level n for the first time.

Solovyev & Zaitsev, 1975, consider an M|G|1l|(k-1)-system with a

Poisson input flow having a variable parameter h*(t). The service time

Y~ G'(y). The problem of finding the asymptotic distribution of r.v. Ty?

the time of the first loss of a customer, is investigated. The central

result obtained is the following




Theorem. If h*(t) = h(t)/8, G"(t) = G(t/a), Y = /B, B = Yk.

m = | tde(t), then
0

¥l yaxy . #

X
k!

(=2 g

lim P{'rk >t} = exp{-
v+0

Asymptotic analysis for a nonstationary input flow involves
considerable analytical difficulties. They are caused mainly by a fommal
necessity to avoid pathological behavior of h*(t).

An investigation of an M|G|r-system with a limited waiting space

and a nonstationary input flow was carried out by Zaitsev § Solovyev, 1975.

2.6, Exponentiality in Birth-and-Death Processes. Birth-and-Death

(BD) process is perhaps the most useful type of random processes'in j
applied probability in general and in reliability theory in particular.
The central role in applications is played by the r.v. Tom’ the passage
time from state 0 (a '"new' system) to state m rebresenting the

failure of the system. We survey in this section several basic results

concerning the asymptotic behavior of the r.v. < and related r.v.'s.

Om

Let us introduce some notation for a BD-process. The process itself
is denoted by wv(t), its state space X = (0,1,2,...,m,m+l,...). xn,
nz0, By B 2 1 denote the '"upward" and "“downward' transition rates.

Quantities ei, i 2 0, are defined as

60 = 1, en = Xo X]. '.'Xn-lluluz...un’ n: 1 R
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and

“n " inf{t:v(t)=m|v(0)=k} . .

Expectations of Ten 4T E[r It will be assumed that the

kal * ko'
BD-process is ergodic.
Let us consider an example from reliability illustrating the use

of BD-processes.

Example - a system with standby and renewal (Gnedenko et al., 1969).

A system has N = n+d+f+s similar elements. n elements must always
work and their failure rate is A. d elements are in a "hot"
{(preoperation) standby and they have the same failure rate. £ elements
are in a "warm" standby and have failure rate 8, B < A. s elements are
in storage (cold standby) and their failure rate is 0. Failed elements
enter a repair shop which is able to repair simultaneously not more than
r elements. The repair time for each element has an exponential
distribution with parameter u. If repair facilities are busy, failed
elements wait in a line. Each operating element, which has failed,

should be immediately replaced by an element from the preoperating

ST

S A g e -




32

standby; its place, in turn, is taken by an element from the warm
standby. Elements in warm standby are replaced by elements from
*

storage. Elements leaving the repair shop join the storage.

The state of the system at time t can be described by the number

v(t) of failed elements. v(t) is a BD-process with transition rates
O‘k’“k):
(n+d)+x + BL, 0sk<s;

A= {(n+d)sr + B(L+s-k) , s<ksgss+2l;

(ned, + £ +s -k, s +2 <kgN.
(2.26)

»
" TU , r>r.
System failure in this case is the event that v(t) reaches the state
m=d+ £ +s +1, which means that the number of operating elements
dropped below n. So, the main reliability index is expressed through

d.f. of r.v. Tom®

It is not difficult to find the exact distribution of Tom by
using ordinary methods, but all computations are very cumbersome.
Usually, the parameters Ai, My and the level m are such that
reaching m by v(t) is a ''rare'" event. Thus, it is natural to

investigate the asymptotic behavior of Ton*

For a simple case of fixed xn, ¥ and m -+ =, the limiting

can be obtained as a corollary of Keilson's

distribution of <

Om




theorem (see Section 2.2). Indeed, let Xl = (0,1,2,...,m-1),

X2 = (m,m+l,...), Xy 0; clearly, q * 0 for Ban ergodic process as
m-+e, and T.V. rOn/;Om will converge in distribution to the
exponential r.v. But this approach is of limited practical importance
in reliability applications for the following reasons. In reliability,
the critical level n, which.is usually the number of failed elements,
is almost never large; on the other hand, the parameters An’ ¥n

often depend on the number m (see, e.g., the previous example) and a

direct application of Keilson's theorem is impossible.

Necessary and sufficient conditions for the asymptotic exponentiality
of Tom "7 found by Solovyev, 1972. Two of his principal results

are presented in the following

Theorem (Solovyev, 1972)

Suppose that )., u; and m vary in an arbitrary way. (i) In order that

“om ~X
lim P{=—> x} = & (2.27)
‘l'on _

it is necessary and sufficient that a . 0, where
»

m-1 k

1 -1 -.
3,2 == (Akek) z es Tos *
Tom s=0

(ii)

max |{P{7 >t} - exp(-t/¥. )| ~a
0st<-l Om P Om | m,2
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* The proof of this theorem is based on an ingenious analysis of the

distribution of 1’0‘.

Let us show, following Gnedenko et al., 1969, Section 6.4, how
to apply the above. theoren, A corresponds to element failure rates ;
and u - to element repair rates. Normally, A, << i which reflects , r
the "fast" repair case. Formalizing this property, let us write '

M= ik“ and assume that o + 0. Obviously,

- k - k
,ak = (Ao...kk_l/ul...uk)c = eka . (2.30) ‘

It can be proved that

.. n-1 -1
an’z ~ xn-lem-la . 1‘: LT (2.31)

e e

Thus a + 0 as a-~ 0 and by the Theorem,

m,2

Plrg, >t} ~ exp{-t/?om} .

The following formula

PhOm > t} m exp(-(t-a)/ (‘EOm -al, (2.32)

m-1
-1
where a = I ui-,is more precise and its relative error has the
1

Several important characteristics of a BD-process related to the

passage time Tom such as ergodic and quasi-stationary exit times were

magnitude (T, —t)a/ T3 . - E
t
studied by Keilson,1975,1979. S

¥
T
¥
H
‘




Ergodic exit time from X1 to Xz, Tep is defined as a passage
time from X1 to Xz, assuming that the jinitial state distribution for
[ ] .
i €AX1 is

pf =r/I ®, i=0l,...ml, (2.33)
16X

where L is the stationary probability of state i.

Suppose that v(t) has been running for a very long time T and

all that time it was in the set Xl. Let

Tor=

Py = lim Plv(e)=ilv(t') € X, t-T st st} . (2.34)

Q

It is shown in Keilson, 1979, Sect. 6.6 how the vector p" = (pg,...,pg_l)
can be expressed through the parameters of BD-process (see Keilson, 1979,
Sect. 6.6, 6.5).

Quasi-stationary exit time is defined as a passage time from X1 to

Q

X2 assuming that the initial state i € X1 has the probability P;-

This index has a special importance for reliability theory because
often it is necessary to predict system reliability given that for a
long time it has been working without failures, i.e., formally, it has

spent an infinite time in the set Xl.

A surprising fact about o is that TQm/;Qm has an exact
exponential distribution with A = 1. (see Keilson, 1975, 1979).
The following theorems summarize the basic facts about the asymptotic

behaviour of =t

Om’ TEm, er .

Y e el




Theorem 1 (Keilson, 1979, Sect. 8.3,8.4)

Let v(t) be an ergodic BD-process governgd by (A n’"n) with

)(1 = (0,1,...,m-1). Let An/un +p<1l as n-+ e, Then

@) Ta1,0/Ton * 1w a5 mee.

are asymptotically equal as a + = |

(ii) Tom* TQm, rErE..f

(1ii) Plry ) /Tg > x} > (-p)e™ as nm+e

Theorem 2 (Keilson, 1979)

For any ergodic BD-process, for which ?Om + o as m+w»,

Tom/'tm, TEm/TOm’ TQn/TOm converge in distribution to r.v.

Y ~ Exp(1). #

2.7. Main event. Asymptotic invariance.

The most diffiault part in finding the normalizing constant

for r.v. v is determining q, the probability of SF on a single

regeneration period. Generally, q can be represented in a form of

asymptotic series q = Q * 9 * 9 * .-y where Qo = °(qk)' Thus

q in the normalizing constant can be replaced by 9, ~ Q- The

quantity 9 has a transparent probabilistic meaning and always is

a probability of some event termed in the literature as "main" event,

Let us return to example 4 in Section 2.4 and, following Gnedenko §

Solovyev, 1275, have a closer look at the relation between
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» +

Iq(d) and I q(d).
d e d e,

Let d={x(0) +x®) = ... +x®) ep,, and 1et k(1), i =1,2,...,s,

ol
be the numbers of failed elements on the d-trajectory. q(d) can be

represented in the following general form:

Ay (o) &)
k(o) & Q) 2) (s-1), s-1 .
D = o kW E P @) ET) Ay & e 3

k{r;;:{xys_l Gk(o)’j (0) (ys'l)ck(rl).j(rl) (ys_l - Yl) * e X

expl-0 My, + AP trymyp) e daldy) Lty (2.35)

Indeed, the elements with numbers k(0),k(1),... fail at t = 0,

t = Yy)s---3 elements with numbers k(0) , k(r]),..., begin immediately their repair,

and gther elements wait for their turn;the repair of those elements which started their
repair without waiting does not end before the instant _
/of s-th failure. This corresponds to a SF on the trajectory d € Dy-

(- -2
From (2.35) it is easy to show that q(d) ~ Constea®"1 , if ys'ldG(y) <® .,
0

N

Lemma (Gnedenko § Solovyev, 1975)

q = L @ = o sy, (2.36)

Proof. Obviously, the total number of element failures on any d € Dl

exceeds s. Let A = {more than s element failures preceded the system

failure} and let B = {the regeneration cycle does not end at the

‘ instant of (.f.*»l)th element failure}. Clearly A< B and P{A} s P{B].




.Now replace the random process x(t) by a majorant process gjt) which

arises if all failure rates are max A(x) = X, Pij(Y) = G(y) and the
x

number of repair channels r = 1. Let C = {the '"busy'" period did not end

at the appearance of (s+1)®" failure}. Clearly, P(B} ¢ P{C}. Let

NgsMysceesng be the repair times for failures which appear at O,yl,..:,ys

and let J-{n0¢n4

1 .”+nsa%,ysao}.mm CsJ, P{C} s P{J} .

. Let Gs#ltx) denote the d.f. of

* ® (Ga)Sx"? = 5a)°(s+1)° 7 s s
q <PU}-{ Do) X exp(Fox)dl,, ) (x) ¢ -(—Ls-f—)—-{) y’d6(y) = 0(a%) ,

(2.37)

which completes the proof. '

The events denoted by M in Examples 1,2 in Section 2.4 are

also "main' events.

It is worthwhile to note that the role played by the main event in
a renewable system is similar to that played by the event of a failure of

all elements constituting minimal cut-sets in a nonrenewable coherent

system (see Section 1).

We note that qq is the only parameter of tae asymptotic distribution
which might depend on the properties of repair time d.f. If we check
formulas (2.18), (2.25) in Section 2.4 we see that 9 in both of them
depends only on the average value of the repair time. This phenomenon

was termed by A.D. Solovyev as "asymptotic invariance' . It takes place

only when the main event corresponds to such a system failure history in

Mg * een * ns.Combintng all inequalities we get
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which every failed element entered the repair channel without delay
(compare, e.g., with (2.19)). It is interesting. to note that a similar
invariance of stationary probabilities with respect to the fom of
service time d.f. was established long ago for an important class of
qucueing systems with losses. Let Py be the stationary probability
that there are k customers in an M|G|n-system, 0 < k < n.
Sevastyanov, 1957, proved that Py can be computed by the well-known
Erlang formulas which involve only the input flow rate X and the

average service time u = [ xdG(x). An up-to-date information about
0

invariance in queueing systems can be found in a recent paper by
Dukhovny & Koenigsberg, 1981.

2.8 Bounds on deviation from exponentiality. These bounds are of great

interest for engineering applications. Solovyev, 1971, derives an
estimate of the rate of convergence to exponential distribution for
regenerating process considered in Section 2.3. His main result is

the following theorem.

Theoren.
Let E[3] =1, ¢() =P{qu ¢ t}, 2<p 53, E[ck] =m,

E(¢"x] = q then

suple(y) -1 + eV | ¢ CB/(p-2),
y20 P

where C is an absolute constant and

(2.38)

empem o
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g 1/ (-1)

BP = max[(mp) . qzlnz.up] s (2.39)

% is defined in (2.12) L

For p=3, Cs~12 and in all known cases Bp = O(up). Denote
by q(x) = P{A|¢ =x]}, the conditional probability of event A given

= x, If + s th n .
T =X q(x) (x) en Bp up

Bounds for BD-process can be found in Solovyev, 1972, and one of
them is given by (2.29).
Solovyev § Sakhobov, 1976, consider a renewal process of a special form
for which the renewal period consists of two independent parts. The
first part has an exponential distribution with parameter ) while the
second has an arbitrary distribution with finite expectation T. Event
A can appear on the second part with probability q, and the appearance
of this event is determined completely by.the behavior of the
process on the second part of the renewal period. Let W(t) = P{r s t},
where t 1is the moment of the first appearance of event A. It was

proved that
exp(-Aqt) s W(t) < exp(-iqt) + AT . (2.40)

In order to apply this formula it is desirable to have two-sided
estimates for the quantity q. Sakhobov § Solovyev, 1977, give such
estimates for a renewal process which is related to an M|G|l-system
for which the input flow intensity depends only on the number £(t) of
customers in the system at time t. If £(t) = k, then the probability

of an arrival of a new customer in the interval (t,t+h) is
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Mh + o(h). Denote t = inf{t:g(t)=n+1|g (0)=0}. Clearly, £(t) is
a regenerating process, and the instants of regeneration tootiseees

are the times when £ (t) enters state 0. thiel “tHh ® g+ g, ¢

is a free period on which £(t) = 0 and Z" is the busy period where

gE(t) > 0. Denote by bij.

bij = g pith)xjc(t)dt ,

where G(t) is the d.f. of service time, Pi.j (t) is the probability

that a pure death process with parameters Ak passes from state i

to state j after time t.

The bounds on q are based on the following lemma which has an

independent interest and can also serve to compute gq.

Lemma (Sakhobov & Solovyev, 1977).

q= cl,n/(cl,n P e, * cn,n + 1), (2.41)

where S n 3% determined from the following recursive relation:

ck,n - b’k,n * i.fk bk,i ci,n ’ isk

A

n, + (2.42)

Let X = m:x Ao Ag = mli‘n Ao Y =i _g exp(-A,t)G (t)dt .

A simple but crude version of a two-sided estimate on q which can be

derived from the above lemma is the following inequality: if 2“'17 is small,

then

b

yafaeb /a1y, (2.43)

|
a

R %




Genis, 1978, investigated the case when the random variable ¢

has a Laplace-Stiltjes transform E[e"z] close to 1/(1+z):

2 3
1+b_2+b,z2"+b.2
E[e"%%] = 1 % i s 2z ®it,
1¢z+azz 4-332 +a4z

where lail and lbil are "small",

An application of his method to a "two-period" regemerating process

leads to the following estimate:

sup|P{t/E[t] s x} -1+¢"*| <C".8 ,
X

where
@) 8 = max[VE(sxd, 5 2 2aEEADY 3,

23 @Y

(i1) 1/2 is the average length of the free period; ¢ is the length of the busy

period; x is the indicator of SF on the busy period, q = E[x] , and the

free period has an exponential d.f.
(iii) Eft] ~1/2rq ;

(iv) 0<C' g4 .

An interesting'and quite different approach to measuring the
deviation from exponentiality for Markov chains based on the notion of a

complete monotone distribution was developed by Keilson, 1979.
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Definition. A p.d.f. £(x) on [0,») is completely monotone (write

f € CM) if all derivatives of f exist and (-l)nfcn)(x) 0, n21.
It turns out that £ € CM e £(x) = [ ye Y* dG(x) for some
0

d.f. G(x), i.e.. £(x) is a mixture of exponential densities (seeo
Keilson, 1979, Section 5.3).

The following quantity 8, serves as a distance to pure

exponentiality for r.v. X with p.d.f. £(x) € CM:

2
o, = ;!‘7 -1, (2.44)

where u = E[{X] and oz = Var X.

8, is a distance in metric space sense for f(x) € CM that have
finite second moment (Keilson, 1979, Section 8.7). This makes it
possible to say for two p.d.f.'s fl and f2 € CM which of them is
"more exponential'”. The applicability of this distance measure to
reliability problems is provided by the fact that many importnat random
variables associated with a Markov process have a p.d.f. € CM. Consider
a time-reversible ergodic Markoc chain v(t) (see Keilson, 1979,
Section 2.4,and note that every ergodic BD-process is time-reversible).
Decompose the state space of v(t), X, into the set X1 of '"good"
states and the set X2 of '"bad" states. Consider the passage time
B from some i €'X1 to set Xz. It was proved that p.d.f. of TiB
is of CM-type (see Keilson, 1979, Section 8.9). Thus it follows that

it is possible to apply the measure of exponentiality (2.44) to r.v.'s
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»

o8’ "’ TQB - the exit time from the bottom state 0 € Xl to the {
set Xz, the ergodic exit time from X1 and t.he quasi-stationary exit

time to X2 » respectively (see the definitions in Section 2.6 ).Of course for
applications one needs to know the mean value and variance of these r.v.'s. ’
Their computation might be rather complex.Some examples of these computations ,

are given in the above-cited book of J.Keilson.

It would be desirable also to express the deviation from
exponentiality of the density f£(x) € CM in an explicit way. The
following bound was found by Heyde & Leslie, 1974:

e g v,

Let X = YW, Y ~Exp(l), and W a nonnegative r.v., independent

of X with E([W] = 1. Then for all x>0

PINEES T I

P(X > x} - o] ¢ 8n"} /5 (a2 - 1)% | (2.45)

Remark. Assume that

1imP{qr/asx}=1-e'x. x>0, | !

where a = E[z] = [ (1-F(x))dx, & is a random regeneration period and
0

t is the time of the first appearance of a ''rare' event A,

Note that for any fixed e > 0 the value of q* such that
q ¢ q* = |P{qt/a 3 ;}-e'xl < ¢ depends, generally, on the form of
d.f. F(x). Moreover, it can be proved that for any fixed q > 0

and fixed a, no upper bound for P{tr < x} can be found, except for

TN o e o £ . e T D, MV T T

a trivial one. More precisely, for any fixed a >0, T >0, q >0 and

€ >0, one can find a d.£. H(x) such that | (1-H(x))dx = a2 but at
0
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the same time, P{t ¢ T} > l-¢. Details on this phenomenon can be found

in the paper of Kovalenko, 1973.

3. Kovalenko's Theorem on Asymptotic State Enlargement

A special random process transformation termed 'state enlargement”
arises in situations when one is dealing with a multidimensional process
E(t) = {;l(t),ez(t)} which has the following property. El(t) is a
slowly varying and Ez(t) is a "rapidly" varying component. More
specifically, there exists a time interval A which is '"small" from
the viewpoint of el(t) and "large' from the viewpoint of sz(t).

On A, the process Ez(t) can be investigated for a fixed value

of El(t), say for the value at the initial time in this interval,
while on A stability is acquired by a certain average characteristic
E}(AJ, which in its essential features determines the law of transition
from El(t) to 51(t+A). Following Kovalenko, 1977, 1980, let us

consider an important example.
Let P@) . ||p§;)l| be the transition matrix of an ergodic

Markov chain {vé°)} and let {F£;)(x)} be a set of distributions

(a,8)

of positive r.v.'s. Let tij be "'small" nonnegative numbers such

that £ eg;’s) €1, and a,8 are members of some finite or
B

denumerable set. Let us construct a trajectory of a two-dimensional

SMP {a(t),v(t)} according to the following procedure.

"
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1. Select a pair (an,vn) as the initial state of the process

th

{a(t),v(t)} after the n jump.

[
2. Select state Vel of the second component according

to the rule:

. (a))
P{vn’l.J lvn} - p\’n-j
3. Sel in ( ) ) F(u“) (x)
. ect one-step sojourn time in (a_,v £ ~ x).
n’ n’? Vo Vnel Vo Vel
(ana)
4. Using numbers ¢ » simulate the choice of a new state
V_,sV
n’ n+l
' vith probability 1 - I e B
6.t a = q_ with pro lity - €
n+l® “n+l a Bfan “n*Vn+1
(anps)
(i.e., a_ remains unchanged); with probability : ¢ ’
n VnoVne1
%1 * 8.
(a))
5. Remain in state (a_,v.) for the time £ and move
n’’n Vo Vnel

afterwards to the state (°n+1’ vn+1)'

One can see that ao(t) varies "slowly'" and v(t) varies
"rapidly''. Moreover, there is a small probability on each step that
a(t) will change. Therefore, one could expect that periods of
a(t) = Const are approximately exponentially distributed (compare with
Keilson's theorem). It turns out that under special circumstances
c(t) indeed behaves as a continuous-time Markov chain. More precisely,

if a series of conditions related to the properties of all quantities

T e e ey

T T G

Py s ety




47

involved in the description of {a(t),v(t)} are valid, then the

following theorem is true.

Theorem (Kovalenko, 1977)

For any set of disjoint time intervals Ai = [ai’bi]’ i=1,...,n,

sup lP{c(t)-ci,tEAi, i=I,n} - P{a* (t)=a,,t€4,, i=l,n}| + 0,

a seeyl
1’ “n

where a*(t) is a separable Markov process with transition rates

aB _ .. (@), (@) _(a,8) (@), (c) (@) )
A lm( 5Pyk €5k /z':kfrJ fxdp (x)
where ";a) are the stationary probabilities for Markov chain {v(u)}

all characteristics of random processes involved depend on ¢, and

the limit is taken as ¢ » 0. #

Thus, one can see that asymptotically the first component of a two-

dimensional random process, a(t), has a simple structure and can be treated

separately from v(t). One can say that from the viewpoint of the first component,

a(t), the states of the second component v(t) are indistinguishable,which
explains the term "state enlargement".

More formally,let us consider some partition of the state space X of
x(t) ={ a(t),v(t)} into the sets { SB } and a function g(x(t)) such thai
g(x) = g(y) if x € fﬁ and y € SB and g(x) # g(y) if x € S31 » YES

B; # 8, . In the above. example, g(a(t),v(t)) = a*(t) and the sets XB =

8, ’

{A; vsep=Const} , where A is the state space of a(t).

The above-mentioned papers of I.N.Kovalenko contain far reaching generalizations

of this scheme and a bibliography of other works related to this topic.

ey e = = i
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4. "“Analyticostatistical" Method of Computing Reliability Characteristics

Let us discuss very briefly an example illustrating a method of

computing system reliability characteristics described by Kovalenko, 1976.

Assume, a Markov chain {vn, n20} with state space R is given by
an initial distribution and transition probabilities, both of which

depend on a small parameter . Specifically

P{\)oii} = p,‘SO) = pj$0) (0) - E'Pi(.O) (1) . EZ.PJSO) l2) . ... (4.1)
P{vn+1=jivn=i} = pij = pf;)) + e-pij 1) + gz.pij ) « ... (4.2)

Let A< R be a failure set, and suppose it is important to estimate

E[z], the average value of r.v. ¢ defined as
L= f(vr) R 4.3)

where f is some given function and < = inf{n:vn € Al.
The special form of Markov chain characteristics (4.1,4.2) allows to obtain
a representation of E[z] in series form:

E[g] = E[CO] + e-E[CI] + 52-5{52] T (4.4)

where g, are random variables. Their distritutions depend on some cther
auxiliary random variables {Bm} whose d.f.'s involve the parameters

of the series (4.1,4.2). Thus, it is possible to simulate r.v.'s

{em} and by means of them to obtain relaizations of r.v.'s

S e g YT



Kovalenko's idea is to estimate E[g] by ¢, where

CO.C1.¢2-- ee
~ n ~ 2A
E=gy*esly teeg, +... , 4.5)

The
and to obtain Ei’ i » 0, the estimates of _ci, using Monte-Carlo simulatizaf\crucial

point is that due to the specific form of (4.1,4.2), only a few tewrms

in (4.5) should be estimated in order to achieve good precision.

Many additional important details of this method can found in the

above-cited paper of Kovalenko and also in references mentioned there.
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